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Abstract

Service robots are required to operate in indoor environ‐
ments to help humans in their daily lives. To achieve the
tasks that they might be assigned, the robots must be able
to autonomously model and interact with the elements in
it. Even in homes, which are usually more predictable than
outdoor scenarios, robot perception is an extremely
challenging task. Clutter, distance and partial views
complicate modelling the environment, making it essential
for robots to approach the objects to perceive in order to
gain favourable points of view. This article proposes a
novel grammar-based distributed architecture, designed
with reusability and scalability in mind, which enables
robots not only to find and execute the perception-aware
plans they need to achieve their goals, but also to verify that
the world representation they build is valid according to a
set of grammatical rules for the world model. Additionally,
it describes a real-world example of use, providing quali‐
tative results, in which a robot successfully models the
room in which it is located and finds a coffee mug.

Keywords Perception-aware Planning, Robot Architec‐
tures, Active Perception, Semantic Perception

1. Introduction

Autonomous robot perception is extremely challenging.
The scenarios in which domestic robots have to carry out

their duties are far from ideal: distant and partial views,
clutter and noise are some of the most significant issues that
autonomous robots have to deal with. To overcome these
factors, robots have to move so that they can achieve
favourable points of view of the elements in their environ‐
ment. These actions are seldom trivial and generally have
to be planned, since robots might be asked to find objects
which are out of sight or even in other rooms. Figure 1
depicts a classic example in which a robot is asked to find
a mug: it will generally encounter scenarios like those in
Figure 1(a), and it will have to find plans that include
verifying that the obstacle ahead is a table, approaching it,
and searching for possible objects that may eventually be
modelled as mugs. Moreover, the individual elements
perceived must be integrated into a representation of the
world to be later used for planning purposes.

In household scenarios, most of the complexity of the
activities that robots perform is still related to perception
[1]. Pure symbolic models such as semantic networks [2]
are not rich enough because they cannot represent the
metric properties of the environment. On the other hand,
planar metric-only representations lack semantic and
topological information, though they are useful for human-
robot interaction and improving planning efficiency.
Hybrid models, encompassing low-level geometrical
details along with symbolic predicates, are a promising
research direction [3]. In brief, robots must be equipped
with mechanisms allowing them to create perception-
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aware plans and turn these plans into actions that create
hybrid models of the environment which can, in turn, be
used to plan and execute the robots’ missions.

To generate this kind of perception-aware resources, it is of
interest to reuse existing state-of-the-art AI planners. Most
of these planners are based on the Planning Domain
Definition Language (PDDL, see [4]), which was designed
to be the reference language for the International Planning
Competition and has become the most widely-used
language in automated planning. However, it was not
designed with perceptual tasks in mind and has two
drawbacks when these tasks are required: i) it does not
support creating or deleting symbols nor modifying their
types [5], and ii) it is not human-friendly for people who
are not used to it. Online symbol creation and deletion are
commonly required in perception-related tasks e.g., when
the goal is to perceive a new world element or it is required
as part of a plan. This limitation of PDDL can be circum‐
vented by including a list of unused symbols and addition‐
al code to handle them. Changing the types of the symbols
as a consequence of active perception is also frequently
necessary. For example, we might want robots to approach
what, at a certain distance, they think is an obstacle to check
if it is actually something that they know. Taking into
account this kind of actions when planning requires a
language that allows changing the types of the symbols
dynamically. Again, this limitation can be circumvented by
translating types to PDDL predicates, but these work‐
arounds decrease efficiency and make the resulting PDDL
code harder to read (see Listing 1). Although it might be
seen as secondary, human-readability can be crucial
because it influences the number of programming errors
developers introduce and their overall efficiency. It also
reduces the number of people that can understand robot
planning domains, which is interesting when the domains
must be supervised by multidisciplinary groups. Addition‐
ally, although some technologies such as hierarchical task
networks [6] provide other types of advantages over PDDL,
no alternative supporting dynamic typing and symbol
creation is yet known.

To overcome the previously mentioned planning limita‐
tions and –most importantly– in order to enable robots to
execute perception-aware plans and verify their outcome,
this paper proposes using a novel architecture named
Active Grammar-based Modeling (AGM) which uses a new
domain definition language. AGM has been designed with
reusability and scalability in mind and provides hybrid
representations (combining symbolic and metric informa‐
tion). It is worth highlighting that AGM can be used to
enable robots to verify that the models built are valid
according to a set of world grammar rules (which helps in
detecting and preventing invalid model modifications) as
well as to demonstrate different perceptual phenomena
such as bottom-up parsing, action selection (both for
perception and mission completion), covert perception and
the inclusion of context-dependent perceptual restrictions.

In AGM, perception and action are the result of the
controlled interaction of a set of software modules that
propose modifications to the robot’s world model and,
depending on the module, perform physical actions. Given
the goal of the robot and the current world model, a planner
provides the executive of the architecture with a sequence
of valid world model modifications (some of them trig‐
gered by perceptual events, others by robot’s actions) that
would take the current world model to a state in which the
goal of the robot is met. The executive forwards plan
updates to the modules so that they can reconfigure
themselves accordingly. When one of these modules
proposes modifying the world model (e.g., because an
action has been achieved or because a new object is
detected), the executive checks that such modification is
valid and, if it is, broadcasts the new model and plan to all
the modules, closing the control loop (see Figure 2).
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(a) Realistic initial scenario. (b) Favorable point of view.

Figure 1. Generally, segmentation and classification algorithms

assume favorable points of view and scenarios in which objects are

easy to segment (see Fig. 1(b)). Despite domestic environments

are structured to some extent, the case depicted in Figure 1(a) is

much more likely. Getting from the situation of Fig. 1(a) to the one

of Fig. 1(b) usually requires an appropriate plan.

can be used with the most common AI planners without dealing

with the previously mentioned workarounds) or directly using a

specific planner (AGGLPlanner, whose implementation details

are out of the scope of the paper).

The remainder of the paper is organized as follows. Section 2

introduces the state of the art. Section 3 provides detailed

information about the AGM architecture and how to design

and implement systems based on it. Section 4 introduces the

Active Graph Grammar Language and how domain definitions

can be defined using it. Section 5 highlights the different

phenomena that can be achieved using AGM. Section 6 describes

software-related issues. Section 7 provides a real-world example

of use in which a domestic robot is commanded to find and model

a coffee mug in a previously unknown environment. Because

the advantages of using AGM are qualitative, the results are also

qualitative: it endows robots with abilities that they previously

lacked (i.e., perception-related planning, model verification).

Section 8 summarizes the conclusions of the paper.

2. State of the art

A grammar can be defined as a theoretical tool used to describe

the rules governing the formation of specific sets of structures.

Graph grammars generalize the concept of string grammars

(those generally used in natural and computer languages) so that

they can also be applied to graphs with indefinitely complex

connection patterns. In fact, strings can be seen as undirected

graphs where all nodes (characters), except those at sentence

endings, have an edge linking them to the adjacent character

on their right. They have been used in robotics and artificial

vision for a wide range of applications. The work presented

in [7] proposed an algorithm for graph grammar verification,

i.e., to verify the properties of the graphs generated by using

the rules of a specific grammar. [8] describes a set of graph

grammar rules over fixed order graphs that can be used to achieve

self-configuring adaptable software architectures. A similar

approach for coordinating multi-robot systems where robots are

represented by graph vertices is proposed in [9]. The graphs,

which are shared by all the robots of the system, are also of

fixed order. Coordination is achieved by modifying the linking

pattern and the label (i.e., role) of the robots. In [10], [11]

and [12] the authors present a series of related works. In [10]

and [12], an attributed graph grammar is designed in order to

parse images taken from man-made scenes. It uses projected

3D rectangles as terminal nodes and different rectangle layouts

as production rules. Bottom-up and top-down mechanisms are

used in order to improve rectangle detection and parsing. Since
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Figure 1. Generally, segmentation and classification algorithms assume
favourable points of view and scenarios in which objects are easy to segment
(see Fig. 1(b)). Although domestic environments are structured to some
extent, the case depicted in Figure 1(a) is much more likely. Getting from the
situation of Fig. 1(a) to that of Fig. 1(b) usually requires an appropriate plan.

In AGM, the world model modification rules that are used
for perception-aware planning and model checking are
described using a visual grammar language named Active
Graph Grammar Language (AGGL). AGGL was designed
with perceptive tasks in mind (i.e., it supports symbol
creation, deletion and dynamic typing) and, thanks to the
visual editor provided (see section 4.1), it is easier for
humans to understand in comparison with PDDL (see
example in Listing 1). Once defined, grammars can be used
for planning, whether by translating them to PDDL (so that
they can be used with the most common AI planners
without dealing with the previously mentioned work‐
arounds) or directly using a specific planner (AGGLPlan‐
ner, whose implementation details are out of the scope of
this paper).

The remainder of the paper is organized as follows. Section
2 introduces the state of the art. Section 3 provides detailed
information about the AGM architecture and how to design
and implement systems based on it. Section 4 introduces
Active Graph Grammar Language and how domain
definitions can be defined using it. Section 5 highlights the
different phenomena that can be achieved using AGM.
Section 6 describes software-related issues. Section 7
provides a real-world example of use in which a domestic
robot is commanded to find and model a coffee mug in a
previously unknown environment. Because the advantag‐
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es of using AGM are qualitative, the results are also
qualitative: it endows robots with abilities that they
previously lacked (i.e., perception-related planning and
model verification). Section 8 summarizes the conclusions
of the paper.

2. State of the art

A grammar can be defined as a theoretical tool used to
describe the rules governing the formation of specific sets
of structures. Graph grammars generalize the concept of
string grammars (those generally used in natural and
computer languages) so that they can also be applied to
graphs with indefinitely complex connection patterns. In
fact, strings can be seen as undirected graphs where all the
nodes (characters), except those at sentence endings, have
an edge linking them to an adjacent character on their right.
They have been used in robotics and artificial vision for a
wide range of applications. The work presented in [7]
proposed an algorithm for graph grammar verification,
i.e., to verify the properties of the graphs generated by using
the rules of a specific grammar. [8] describes a set of graph
grammar rules over fixed-order graphs that can be used to
achieve self-configuring adaptable software architectures.
A similar approach for coordinating multi-robot systems
where robots are represented by graph vertices is proposed
in [9]. The graphs, which are shared by all the robots of the
system, are also of fixed order. Coordination is achieved by
modifying the linking pattern and the label (i.e., role) of the
robots. In [10, 11] and [12], the authors present a series of
related works. In [10] and [12], an attributed graph gram‐
mar is designed in order to parse images taken from man-
made scenes. It uses projected 3D rectangles as terminal
nodes and different rectangle layouts as production rules.
Bottom-up and top-down mechanisms are used in order to
improve rectangle detection and parsing. Since different
possible models can explain input images, the algorithm
chooses the one that maximizes the posterior probability.
The work presented in [11] follows the same approach for
generic scenes. In [13], a similar approach to that described
in [12] is used for object recognition. In this case, both the
set of primitives and the production rules are wider but the
foundations are the same. These approaches have two main
differences from what is proposed in this paper: a) they use
static input data, which is a very hard restriction for
robotics; b) they are based on string grammars instead of
graph grammars, reducing the number of problems that
can be solved. In [14], grammars are used to describe plans

and how can they be dynamically modified as sub-tasks are
accomplished or as conditions change. In [15] Spatial
Random Tree Grammars (SRTG) are proposed for image
parsing. SRTG’s are context-free grammars in which rules
are labeled with information for determining the spatial
distribution of their nodes (i.e., vertically or horizontally
distributed). While in string grammars this is not necessary
(i.e., productions are always horizontally distributed), it
guarantees the unambiguous interpretation of parse trees
from graph grammars. In this work, a probability distribu‐
tion is also associated to production rules so that the
probability of a specific parse can be estimated. The work
presented in [16] deals with still-image understanding.
Although it is not explicitly grammar-based, it uses a
generative approach, and the result of the algorithm is a
parse graph. The focus of this paper is to provide an image
understanding algorithm consistent with physical laws
that goes beyond unembodied image labeling.

Even though several works use grammars to generate
representations of the contents of images ([10, 12, 13, 17]),
all of them approach perception as a passive process where
the input data is static and complete from the beginning.
The grammars proposed in the present paper not only
allow us to define how the world model can be transformed
but also allow us to achieve other goals, such as deciding
what robots should do to achieve their goals, incremental
model checking (the architecture guarantees that the
models generated using it are created according to the
grammar), and decreasing programming errors (develop‐
ers do not need to hard-code the grammar or describe what
the robot should do in a general-purpose language, and can
instead do so in a higher level language that can be
graphically visualized).

From the point of view of integrated planning and execu‐
tion, the dominant approach is to use three-tiered architec‐
tures [18], which are composed of a planner, a task
sequencer and a skill layer. In [19], a comprehensive
classification of many control architectures is provided,
attending to the relative weight of the sequencer and the
planning modules. There are remarkable early approaches
that rely on strong executors, such as Subsumption [20],
SOAR [21] and AuRa [22], as well as more advanced
interleaving systems that actively gather information from
the environment for the planners to generate better plans,
such as IPEM [23], ASPIRE [24] and RETSINA [25], and a
final category that gathers those systems that focus on a

(: action detectObstacle

:parameters ( ? status ?room ?gualzru ?ListAGMInternal ? list0 )

:precondition (and ( ISstatus ? status ) (ISroom ?room) (ISrobot ?gualzru ) ( firstunknown ? list0 ) (unknownorder ? list0 ?ListAGMInternal)

(not(= ? status ?room)) (not(= ? status ?gualzru ) ) (not(= ? status ?ListAGMInternal)) (not(= ? status ? list0 ) ) (not(= ?room ?gualzru) )

(not(= ?room ?ListAGMInternal)) (not(= ?room ? list0 ) ) (not(= ?gualzru ?ListAGMInternal)) (not(= ?gualzru ? list0 ) )

(not(= ?ListAGMInternal ? list0 ) ) ( in ?gualzru ?room) ( notFullyExplored ?room ? status ) )

: effect (and (not ( firstunknown ? list0 ) ) (not (unknownorder ? list0 ?ListAGMInternal)) ( firstunknown ?ListAGMInternal)

( ISobstacle ? list0 ) ( contains ?room ? list0 )

)

Listing 1. PDDL counterpart of the AGGL rule described in Figure 4
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Planning Given the current world state, the goal and the

grammar of the world model, each cycle of the architecture

starts with the executive asking the planner for the best plan

to achieve the goal. Once the planner finds a plan, the

executive propagates it to all the agents. In AGM a plan is a

sequence of graph transformations that would take the world

model to a state in which the goals are met. Each particular

transformation is specified providing the name of the rule to

trigger and a map matching the symbols in the rule to the

ones in the model (see Sect. 5.1).

Agent reconfiguration After the plan is broadcasted, the

executive waits for model modification proposals from the

agents. Agents, which have their own control loop, receive

the latest plan and modify their behavior according to it.

Despite only the first step of the plan (the most immediate

modification to perform in the model) is generally taken into
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powerful deliberator component, such as DPLAN [26],
CASPER [27] and Rogue [28]. Based on these ideas, there
have been attempts to design generic architectures that
provide a framework to integrate different planning,
monitoring and learning algorithms using state-of-the-art
component-oriented software techniques such as PELEA
[29], MAPGEN [30] and IxTeT [31].

AGM can be seen as an alternative distributed generic
solution to the construction of intelligent robots that
introduces graph grammars as the formal representation of
the dynamics of world states, and as a generative mecha‐
nism to build hybrid world models. The main advantages
of AGM over these approaches is that it supports the
planning of perception tasks and model checking and that
it allows users to express domains using AGGL, with the
advantages this entails.

3. Active Grammar-based Modeling

Active Grammar-based Modeling (AGM) is a robotics archi‐
tecture with a strong focus on enabling active perception in
non-trivial environments, where perception is something
that needs to be explicitly planned. The architecture,
depicted in Figure 2, is composed of three main elements:
a) a grammar-based controller, b) an AI planner, and c) a set
of software modules that can act and propose changes to
the world representation —in short, these modules are
referred to as agents from now on. The controller is in turn
composed of an executive and three passive elements that
are handled by it: the world’s grammar, the goal of the
robot and the current world model. Globally, AGM works
as a loop as follows:

Figure 2. Design diagram of AGM. The executive along the mission, grammar
and the model form the so-called grammar-based controller. The planner is used
by the executive to find plans and verify change proposals. The set of modules
that propose changes —referred to as agents in the context of AGM, in short
— interact with the world perceiving or acting according to the plan, and
propose to the executive model updates to acknowledge new information
gathered from the environment or their actions. The executive then
broadcasts to the rest of the agents those change-proposals that are found to
be valid.

• Planning Given the current world state, the goal and the
grammar of the world model, each cycle of the architec‐
ture starts with the executive asking the planner for the

best plan to achieve the goal. Once the planner finds a
plan, the executive propagates it to all the agents. In
AGM, a plan is a sequence of graph transformations that
would take the world model to a state in which the goals
are met. Each particular transformation is specified
providing the name of the rule to trigger and a map
matching the symbols in the rule to those in the model
(see Sect. 5.1).

• Agent reconfiguration After the plan is broadcast, the
executive waits for model modification proposals from
the agents. The agents, which have their own control
loop, receive the latest plan and modify their behaviour
according to it. Although only the first step of the plan
(the most immediate modification to perform in the
model) is generally taken into account, there are scenar‐
ios where the whole plan might be needed1.

• Modification proposal and verification Once adapted
to the latest plan, the agents continue operating autono‐
mously until, at some point, one of them proposes a
modification of the world model to the executive and it
is accepted (e.g., a human-robot interaction module
might propose including a new human in the model).
The verification of the modification proposals is solved
by the executive by posing them as planning problems,
whereby the world state is the current model and the
goal state is the model proposed: if the planner can find
a sequence of modifications that lead the current model
to the one proposed, it is considered valid. Finally, when
a new model proposal has been accepted, the executive
broadcasts the new version to all the agents and a new
cycle starts.

Figure 2. Design diagram of AGM. The executive along themission, grammar and themodel form the so called grammar-based controller.

The planner is used by the executive to find plans and verify change proposals. The set of modules that propose changes —referred to

as agents in the context of AGM, for short— interact with the world perceiving or acting according to the plan and propose the executive

model updates to acknowledge new information gathered from the environment or their actions. The executive broadcasts then to the rest

of the agents those change proposals that are found to be valid.

Figure 3. Simple example of an AGM model containing three

nodes for representing a human, a robot and a ball. The picture

also shows the attributes a ball symbol could have: x, y and z

coordinates, and its color.

account, there are scenarios where the whole plan might be

needed1.

Modification proposal and verification Once adapted to the

latest plan, agents continue operating autonomously until, at

some point, one of them proposes a modification of the world

model to the executive and it is accepted (e.g., a human-robot

interaction module might propose to include a new human in

the model). The verification of the modification proposals

is solved by the executive by posing them as planning

problems, where the world state is the current model and the

goal state is the model proposed: if the planner can find a

sequence of modifications that lead the current model to the

one proposed, it is considered valid. Finally, when a new

model proposal is been accepted, the executive broadcasts to

all the agents the new version and a new cycle starts.

The models resulting from this interaction among the modules of

AGM are graphs with labeled links and attributed symbols, such

as the one depicted in figure 3.

As pointed out previously, there are tasks for which a pure

symbolic model is useless or inefficient (e.g., object tracking,

navigation, grasping). On the other hand, there is no known

algorithm able to perform generic reasoning using metric data.

To enable robots to take metric information into account when

planning we follow a very simple approach: all the planning

done by the AGM executive is performed at a symbolic level

(using symbols and edges between them); any metric property

1 For example, a human having breakfast at bed who commands the robot to fetch

the butter. The plan could be the following: i) go from bedroom to living room,

ii) go from living room to kitchen, iii) open fridge, iv) find butter, v) fetch butter,

vi) close fridge, vii) go from kitchen to living room, viii) go from living room

to bedroom, and ix) deliver butter. Lets also assume that the robot has a “butter

detector” module. In this scenario, given that the robot could find the butter on its

way to the kitchen and that activating the detector would not interfere with robot

navigation, the “butter detector” module could be activated every time there is a

“find butter” action in the plan.

supposed to affect plans has to be symbolized by an agent. For

example, if we want the robot to talk only to close people, we

can make one of the agents mark humans as close or far by

including or removing edges labeled, as “interactionDistance”.

The attributes of the nodes are not considered in the planning

process and are not covered by the grammar because they do not

affect the structure of the model. Therefore, the updates for the

attributes of the nodes are automatically broadcasted (no model

verification is involved). Despite they are not used for planning,

they can be used by other agents (e.g., an agent implementing a

tracker can update the coordinates of objects, while another agent

that makes the robot grasp objects can use these coordinates).

4. Active Graph Grammar Language

Active Graph Grammar Language (AGGL) is the visual

language used in the AGM architecture to specify the

transformation rules that describe how the world model of the

robot can be created and modified. Grammars defined in AGGL

can be directly used for planning using a special planner or

translated to PDDL to use the grammars with PDDL planners

after translation2.

As opposed to PDDL, in AGGL developers do not describe

actions and their effects explicitly. Instead, they describe the

possible transformations that the world may suffer. Such changes

are expressed using graph-grammar rules such as the one in

Figure 5, which are similar to any other grammar rule but

adapted to graphs. Using the AGGL editor tool (see Fig. 4)

the design of AGGL grammars is straightforward, it provides

the necessary tools to create transformation rules by including,

removing or modifying nodes and edges.

4.1. Describing rules

As any other grammar, graph grammars are sets of grammar

rules —also known as graph rewriting rules— where each one

describes a valid transformation that the representation may

suffer. They are described using pairs of patterns G1 =⇒ G2,

meaning that the pattern G1 can be substituted with pattern G2

(see Figs. 4, and 5). For short, the left-hand side of the pair is

usually referred to as LHS, and the right one as RHS.

2 Even when using PDDL planners, developers using AGGL benefit from avoiding

dealing with the necessary PDDL-workarounds commented in the introduction.
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Figure 3. Simple example of an AGM model containing three nodes for
representing a human, a robot and a ball. The picture also shows the
attributes that a ball symbol could have: x, y and z coordinates, and its color.

The models resulting from this interaction among the
modules of AGM are graphs with labeled links and
attributed symbols, such as that depicted in figure 3.

As pointed out previously, there are tasks for which a pure
symbolic model is useless or else inefficient (e.g., object
tracking, navigation and grasping). On the other hand,
there is no known algorithm able to perform generic
reasoning using metric data. To enable robots to take metric
information into account when planning, we follow a very
simple approach: all the planning done by the AGM
executive is performed at a symbolic level (using symbols

1 For example, a human having breakfast in bed who commands the robot to fetch the butter. The plan could be as follows: i) go from the bedroom to the
living room, ii) go from the living room to the kitchen, iii) open the fridge, iv) find the butter, v) fetch the butter, vi) close the fridge, vii) go from the kitchen
to the living room, viii) go from the living room to the bedroom, and ix) deliver the butter. Let us also assume that the robot has a "butter detector" module.
In this scenario, given that the robot could find the butter on its way to the kitchen and that activating the detector would not interfere with robot navigation,
the "butter detector" module could be activated every time there is a "find butter" action in the plan.
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and the edges between them); any metric property sup‐
posed to affect the plans has to be symbolized by an agent.
For example, if we want the robot to talk only to close
people, we can make one of the agents mark humans as
close or far by including or removing edges labeled as
“interactionDistance”. The attributes of the nodes are not
considered in the planning process and are not covered by
the grammar because they do not affect the structure of the
model. Therefore, the updates for the attributes of the
nodes are automatically broadcast (no model verification is
involved). Although they are not used for planning, they
can be used by other agents (e.g., an agent implementing a
tracker can update the coordinates of objects, while another
agent that makes the robot grasp objects can use these
coordinates).

4. Active Graph Grammar Language

Active Graph Grammar Language (AGGL) is the visual
language used in the AGM architecture to specify the
transformation rules that describe how the world model of
the robot can be created and modified. Grammars defined
in AGGL can be directly used for planning using a special
planner or translated into PDDL to use the grammars with
PDDL planners after translation2.

As opposed to PDDL, in AGGL developers do not describe
actions and their effects explicitly. Instead, they describe
the possible transformations that the world may incur.
Such changes are expressed using graph-grammar rules,
such as the one in Figure 5, which are similar to any other
grammar rules but which are adapted to graphs. Using the
AGGL editor tool (see Fig. 4), the design of AGGL gram‐
mars is straightforward –it provides the necessary tools to
create transformation rules by including, removing or
modifying nodes and edges.

4.1 AGGL rules

As with any other grammar, graph grammars are sets of
grammar rules —also known as graph rewriting rules—

whereby each one describes a valid transformation that the
representation may incur. They are described using pairs
of patterns G1 ⇒G2, meaning that the pattern G1 can be
substituted with the pattern G2 (see Figs. 4 and 5). The left-
hand side of the pair is usually referred to as the LHS and
the right-hand side as the RHS.
Figure 4. Screenshot of AGGLEditor, the tool used to describe AGGL grammars. In this example the rule states that the robot can create
new objects in the room in which it is located as long as the room is not considered “fully explored”.

(a) Include new objects.

(b) Remove objects.

(c) Transform undefined objects into mugs.

Figure 5. Examples of simple graph-grammar rules.

In AGGL, each symbol in the grammar rules is represented by a
node with two strings: an identifier (used to match the symbols in
the LHS with the ones in the RHS) and another string denoting
the type of the symbol. Relationships between the elements of
the model are represented by labeled links. There can be more
than a link between two nodes as long as they have different
labels.

As opposed to string grammars, graph grammars lack of a
generally accepted formalism for specifying their behavior.
We chose to use a slight modification of the double push-out
formalism because of its simplicity and readability [32]. The
behavior of rules in AGGL is the following:

• A rule can only be applied if a match between the elements
and connection patterns of the LHS of the rule with the ones
in the model is found.

• In order to apply a rule, the nodes and edges that are present
in the LHS but not in the RHS are removed, the ones present
in the RHS but not in the LHS are created, those appearing
in both or no side remain.

• If the origin or end of an edge correspond to a node that will
be removed, such edge will also be removed.

• If the type of a symbol in the RHS of a rule differs from the
type specified in the LHS, the type of the symbol is changed
as a result of executing rule (see Fig. 5(c)).

For example, rules can be used to express the possibility
that tables can be associated with new objects in the robot
world model (Fig. 5(a)), that objects can disappear from tables
(Fig. 5(b)), or that objects in tables can be converted into mugs
(Fig. 5(c)).

Additionaly, rules can be set as passive or active. Active
rules are used for planning and model verification, whilst
passive rules are only used for model verification. Passive
rules are explicitly specified in the grammar to avoid using
rules describing exogenous events for planning (e.g., the battery
discharging, or the sun rising).

5. Using Active Grammar-based Modeling

Active Grammar-based Modeling facilitates achieving different
perceptive and reasoning skills. This section describes how some
of the most remarkable ones can be implemented.

5.1. Perception-aware planning

As described in Sect. 3, AGGL can be used to describe rules that
can later be used to find plans. AGGL allows creating, deleting
and modifying the types of the symbols. These operations are
extremely common when performing perception-related tasks
such as finding or classifying objects. Using AGM robots
can achieve any kind of task regardless of whether there are
perceptive (sub)tasks involved or not. The requirement is that
all actions that are desired to be planned using the grammar
must have consequences in the symbolic representation of the
world (nodes and edges), so that a planner can reason about these
actions and their consequences.

The goals of the robot are defined in terms of graph patterns
that are desired to be found in the representation. The symbols
in the target patterns can be constants or variables. Constants
are represented by symbols with the numeric identifier of any
of the symbols in the current model as identifier and are forced
to match such symbol. Variables are denoted by symbols with
variable names as identifiers, and can match any of the rest of the
symbols or unknown ones. If the robot aims to find a new mug, a
valid goal would be a graph containing all known mug symbols
(as constants) and a non-existing one (using a variable). If the
mug must be found in the current room, the goal pattern must
contain the current room symbol and a non-existing mug symbol
connected to it. Any goal pattern is valid, as long as it can be
achieved after applying a finite sequence of grammar rules to the
current model. Therefore, if a robot in the situation depicted in
figure 3 is commanded to touch the ball, its target subpattern
(goal) would be the one in figure 6(b). Note that in the example
the symbol corresponding to the human does not appear: this
means that (in this specific case) the robot is not interested in its
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Figure 5. Examples of simple graph-grammar rules

In AGGL, each symbol in the grammar rules is represented
by a node with two strings: an identifier (used to match the
symbols on the LHS with those on the RHS), and another
string denoting the type of the symbol. Relationships
between the elements of the model are represented by
labeled links. There can be more than one link between two
nodes so long as they have different labels.

As opposed to string grammars, graph grammars lack a
generally accepted formalism for specifying their behav‐
iour. We chose to use a slight modification of the double
push-out formalism because of its simplicity and readability
[32]. The behaviour of the rules in AGGL is as follows:

• A rule can only be applied if a match between the
elements and the connection patterns of the LHS of the
rule with those in the model is found.

• In order to apply a rule, the nodes and edges that are
present on the LHS but not on the RHS are removed;

2 Even when using PDDL planners, developers using AGGL benefit from avoiding dealing with the necessary PDDL workarounds commented on the
introduction.

Figure 4. Screenshot of AGGLEditor, the tool used to describe AGGL grammars. In this example the rule states that the robot can create

new objects in the room in which it is located as long as the room is not considered “fully explored”.

(a) Include new objects.

(b) Remove objects.

(c) Transform undefined objects into mugs.

Figure 5. Examples of simple graph-grammar rules.

In AGGL, each symbol in the grammar rules is represented by a

node with two strings: an identifier (used to match the symbols in

the LHS with the ones in the RHS) and another string denoting

the type of the symbol. Relationships between the elements of

the model are represented by labeled links. There can be more

than a link between two nodes as long as they have different

labels.

As opposed to string grammars, graph grammars lack of a

generally accepted formalism for specifying their behavior.

We chose to use a slight modification of the double push-out

formalism because of its simplicity and readability [32]. The

behavior of rules in AGGL is the following:

• A rule can only be applied if a match between the elements

and connection patterns of the LHS of the rule with the ones

in the model is found.

• In order to apply a rule, the nodes and edges that are present

in the LHS but not in the RHS are removed, the ones present

in the RHS but not in the LHS are created, those appearing

in both or no side remain.

• If the origin or end of an edge correspond to a node that will

be removed, such edge will also be removed.

• If the type of a symbol in the RHS of a rule differs from the

type specified in the LHS, the type of the symbol is changed

as a result of executing rule (see Fig. 5(c)).

For example, rules can be used to express the possibility

that tables can be associated with new objects in the robot

world model (Fig. 5(a)), that objects can disappear from tables

(Fig. 5(b)), or that objects in tables can be converted into mugs

(Fig. 5(c)).

Additionaly, rules can be set as passive or active. Active

rules are used for planning and model verification, whilst

passive rules are only used for model verification. Passive

rules are explicitly specified in the grammar to avoid using

rules describing exogenous events for planning (e.g., the battery

discharging, or the sun rising).

5. Using Active Grammar-based Modeling

Active Grammar-based Modeling facilitates achieving different

perceptive and reasoning skills. This section describes how some

of the most remarkable ones can be implemented.

5.1. Perception-aware planning

As described in Sect. 3, AGGL can be used to describe rules that

can later be used to find plans. AGGL allows creating, deleting

and modifying the types of the symbols. These operations are

extremely common when performing perception-related tasks

such as finding or classifying objects. Using AGM robots

can achieve any kind of task regardless of whether there are

perceptive (sub)tasks involved or not. The requirement is that

all actions that are desired to be planned using the grammar

must have consequences in the symbolic representation of the

world (nodes and edges), so that a planner can reason about these

actions and their consequences.

The goals of the robot are defined in terms of graph patterns

that are desired to be found in the representation. The symbols

in the target patterns can be constants or variables. Constants

are represented by symbols with the numeric identifier of any

of the symbols in the current model as identifier and are forced

to match such symbol. Variables are denoted by symbols with

variable names as identifiers, and can match any of the rest of the

symbols or unknown ones. If the robot aims to find a new mug, a

valid goal would be a graph containing all known mug symbols

(as constants) and a non-existing one (using a variable). If the

mug must be found in the current room, the goal pattern must

contain the current room symbol and a non-existing mug symbol

connected to it. Any goal pattern is valid, as long as it can be

achieved after applying a finite sequence of grammar rules to the

current model. Therefore, if a robot in the situation depicted in

figure 3 is commanded to touch the ball, its target subpattern

(goal) would be the one in figure 6(b). Note that in the example

the symbol corresponding to the human does not appear: this

means that (in this specific case) the robot is not interested in its
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Figure 4. Screenshot of AGGLEditor, the tool used to describe AGGL grammars. In this example, the rule states that the robot can create new objects in the
room in which it is located so long as the room is not considered "fully explored".
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those present on the RHS but not on the LHS are created;
those appearing on both or on no side remain.

• If the origin or end of an edge correspond to a node that
will be removed, such edge will also be removed.

• If the type of a symbol in the RHS of a rule differs from
the type specified in the LHS, the type of the symbol is
changed as a result of executing rule (see Fig. 5(c)).

For example, rules can be used to express the possibility
that tables can be associated with new objects in the robot
world model (Fig. 5(a)), that objects can disappear from
tables (Fig. 5(b)), or that objects on tables can be converted
into mugs (Fig. 5(c)).

Additionally, the rules can be set as passive or active. Active
rules are used for planning and model verification while
passive rules are only used for model verification. Passive
rules are explicitly specified in the grammar to avoid using
rules describing exogenous events for planning (e.g., the
battery discharging or the sun rising).

5. Using Active Grammar-based Modeling

Active Grammar-based Modeling facilitates achieving
different perception and reasoning skills. This section
describes how some of the most remarkable ones can be
implemented.

5.1 Perception-aware planning

As described in Sect. 3, AGGL can be used to describe rules
that can later be used to find plans. AGGL allows creating,
deleting and modifying the types of the symbols. These
operations are extremely common when performing
perception-related tasks, such as finding or classifying
objects. Using AGM, robots can achieve any kind of task
regardless of whether there are perceptive (sub)tasks
involved or not. The requirement is that all actions that are
desired to be planned using the grammar must have
consequences in the symbolic representation of the world
(nodes and edges) so that a planner can reason about these
actions and their consequences.

The goals of the robot are defined in terms of the graph
patterns that are sought in the representation. The symbols
in the target patterns can be constants or variables. Con‐
stants are represented by symbols with the numeric
identifier of any of the symbols in the current model as an
identifier, and they are forced to match such a symbol.
Variables are denoted by symbols with variable names as
identifiers and can match any of the rest of the symbols or
else unknown ones. If the robot aims to find a new mug, a
valid goal would be a graph containing all known mug
symbols (as constants) and a non-existing mug symbol
(using a variable). If the mug must be found in the current
room, the goal pattern must contain the current room
symbol and a non-existing mug symbol connected to it.
Any goal pattern is valid so long as it can be achieved after

applying a finite sequence of grammar rules to the current
model. Therefore, if a robot in the situation depicted in
figure 3 is commanded to touch the ball, its target sub-
pattern (goal) would be that in figure 6(b). Note that, in the
example, the symbol corresponding to the human does not
appear: this means that (in this specific case) the robot is
not interested in its relationship with the human, only in
touching the ball; symbols not appearing in the target
pattern are not taken into account. Making a symbol
constant in the target pattern forces the planner to search
for a world model in which such a symbol corresponds to
the one with the same identifier in the current model. Goal
patterns can be static or set by additional modules.

(a) Touch a ball.

(b) Touch the ball with identifier 3.

Figure 6. Target patterns that could be used to make a robot
touch a ball.

relationship with the human, only in touching the ball; symbols
not appearing in the target pattern are not taken into account.
Making a symbol constant in the target pattern forces the planner
to search for a world model in which such symbol corresponds
to the one with the same identifier in the current model. Goal
patterns can be static or set by additional modules.

The result of the planning is a list of transformations that would
take the current world model to the target state (the one that
defines the mission). Each transformation is specified with
the name of the rule and a map matching the variables in the
left-hand side of the rule with the numeric identifiers of the
symbols involved in the current model. The following are two
examples of possible executions of the rules defined in Fig. 5(a)
and Fig. 5(c), respectively:

f indOb ject : t → 4

modelMug : t → 4, o → 8
(1)

Execution is achieved by forwarding the computed plan to the
agents in each execution cycle. The robot’s behavior is the result
of the coordinated actions of all the agents given the current plan.

5.2. Context-aware perception

Despite suggesting that robot perception should be adapted to
the context is a rather evident thought, the path to achieve
context-aware perception appropriately is still an open question.
In AGGL, rules describe the context in which a transformation
can be applied (in their left-hand side) and it can be used to define
several context-specific rules. For example, if we want robots
to behave differently when they are looking for new objects
depending on the location the robot is inspecting, the floor and
a table for this example, the grammar would have two different
rules differing in what the robot looks at: one in which the robot
appears looking the floor and one in which the robot appears
looking a table. Therefore, the first rule could only be applied
when inspecting the floor, and the second one could only be
applied when inspecting a table. Since the agents are provided
with the plan of the robot (the sequence of rules to be triggered)
their behavior can be adapted depending on the name of the first
rule to trigger (e.g., findObjectInFloor or findObjectInTable).

5.3. Context-aware perception restrictions and model
verification

The limitations imposed by the grammar on the context can
help detecting (and therefore reducing) perceptual errors because
some of them will probably not comply with the rules of the
grammar and this situation can be detected. To illustrate this,
consider the rules in Figure 7:

These rules would avoid, for example, attaching a nose to a torso.
Since there is no rule (or rule sequence) that would do such thing,

(a) Rule name: modelHead

(b) Rule name: modelNose

Figure 7. Simple rules that could be used for modeling the head
and nose of a human.

the planner used by the executive to verify changes would report
that there is no plan that would directly link a nose to a torso.
Using this grammar, the only way to perceive a nose would be to
detect first the head of the human and only then detect its nose.
By making these checks for every possible model change we can
guarantee that the generated models comply with the grammar.

5.4. Covert perception

Covert perception is another interesting application of AGM. In
poor conditions, such as when parts of the objects to detect are
occluded or there is too much noise, bottom-up object detectors
tend to decrease their effectiveness dramatically. Grammars can
also be used to diminish this issue by enforcing the detection
of specific parts of the model (also referred to as covert
perception [33]). This means that AGM can not only be used to
reduce false positives in object detection but also to reduce false
negatives. Consider the rules shown in Figure 8 as an extension
of those in Figure 7. Introducing these rules we actually enable

(a) Additional rule allowing to imagine a head without actually seeing it (pHead is
a short name for proto-head).

(b) Additional rule allowing to transforming pHead symbols to head symbols

Figure 8. Simple extension of the rules shown in Figure 7.

the robot to model the head using two different strategies: a) by
regular detection using an ad-hoc detector/modeler (see rule in
Figure 7(a)) and; b) by detecting a nose, which makes evident
there is a head supporting it that should be modeled (rules in
Figures 8(a) and 8(b)). It must be noted that, in the second case,
the information provided by the modeled nose can be used by a
“head detector” to improve its effectiveness by providing a good
a priori based on the information provided by the nose symbol.

5.5. Dealing with qualitative metric information

As introduced in Sect. 3, in AGM, metric-only changes are
automatically broadcasted to all the agents in the system because
pure-metric information does not have grammatical meaning
and, therefore, does not to affect plans nor can be grammatically
checked. If pure-metric information is desired to affect the
plans of the robot, one of the agents should introduce structural
changes in the model when required. For example, in the case
that a robot may collide with another object, one of the agents
should be in charge of denoting it by including a new link labeled
with an appropriate name such as “mayCollideWith” between
the symbol of the robot and the one of the obstacle.
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Figure 6. Target patterns that could be used to make a robot touch a ball

(a) Touch a ball.

(b) Touch the ball with identifier 3.

Figure 6. Target patterns that could be used to make a robot
touch a ball.

relationship with the human, only in touching the ball; symbols
not appearing in the target pattern are not taken into account.
Making a symbol constant in the target pattern forces the planner
to search for a world model in which such symbol corresponds
to the one with the same identifier in the current model. Goal
patterns can be static or set by additional modules.

The result of the planning is a list of transformations that would
take the current world model to the target state (the one that
defines the mission). Each transformation is specified with
the name of the rule and a map matching the variables in the
left-hand side of the rule with the numeric identifiers of the
symbols involved in the current model. The following are two
examples of possible executions of the rules defined in Fig. 5(a)
and Fig. 5(c), respectively:

f indOb ject : t → 4

modelMug : t → 4, o → 8
(1)

Execution is achieved by forwarding the computed plan to the
agents in each execution cycle. The robot’s behavior is the result
of the coordinated actions of all the agents given the current plan.

5.2. Context-aware perception

Despite suggesting that robot perception should be adapted to
the context is a rather evident thought, the path to achieve
context-aware perception appropriately is still an open question.
In AGGL, rules describe the context in which a transformation
can be applied (in their left-hand side) and it can be used to define
several context-specific rules. For example, if we want robots
to behave differently when they are looking for new objects
depending on the location the robot is inspecting, the floor and
a table for this example, the grammar would have two different
rules differing in what the robot looks at: one in which the robot
appears looking the floor and one in which the robot appears
looking a table. Therefore, the first rule could only be applied
when inspecting the floor, and the second one could only be
applied when inspecting a table. Since the agents are provided
with the plan of the robot (the sequence of rules to be triggered)
their behavior can be adapted depending on the name of the first
rule to trigger (e.g., findObjectInFloor or findObjectInTable).

5.3. Context-aware perception restrictions and model
verification

The limitations imposed by the grammar on the context can
help detecting (and therefore reducing) perceptual errors because
some of them will probably not comply with the rules of the
grammar and this situation can be detected. To illustrate this,
consider the rules in Figure 7:

These rules would avoid, for example, attaching a nose to a torso.
Since there is no rule (or rule sequence) that would do such thing,

(a) Rule name: modelHead

(b) Rule name: modelNose

Figure 7. Simple rules that could be used for modeling the head
and nose of a human.

the planner used by the executive to verify changes would report
that there is no plan that would directly link a nose to a torso.
Using this grammar, the only way to perceive a nose would be to
detect first the head of the human and only then detect its nose.
By making these checks for every possible model change we can
guarantee that the generated models comply with the grammar.

5.4. Covert perception

Covert perception is another interesting application of AGM. In
poor conditions, such as when parts of the objects to detect are
occluded or there is too much noise, bottom-up object detectors
tend to decrease their effectiveness dramatically. Grammars can
also be used to diminish this issue by enforcing the detection
of specific parts of the model (also referred to as covert
perception [33]). This means that AGM can not only be used to
reduce false positives in object detection but also to reduce false
negatives. Consider the rules shown in Figure 8 as an extension
of those in Figure 7. Introducing these rules we actually enable

(a) Additional rule allowing to imagine a head without actually seeing it (pHead is
a short name for proto-head).

(b) Additional rule allowing to transforming pHead symbols to head symbols

Figure 8. Simple extension of the rules shown in Figure 7.

the robot to model the head using two different strategies: a) by
regular detection using an ad-hoc detector/modeler (see rule in
Figure 7(a)) and; b) by detecting a nose, which makes evident
there is a head supporting it that should be modeled (rules in
Figures 8(a) and 8(b)). It must be noted that, in the second case,
the information provided by the modeled nose can be used by a
“head detector” to improve its effectiveness by providing a good
a priori based on the information provided by the nose symbol.

5.5. Dealing with qualitative metric information

As introduced in Sect. 3, in AGM, metric-only changes are
automatically broadcasted to all the agents in the system because
pure-metric information does not have grammatical meaning
and, therefore, does not to affect plans nor can be grammatically
checked. If pure-metric information is desired to affect the
plans of the robot, one of the agents should introduce structural
changes in the model when required. For example, in the case
that a robot may collide with another object, one of the agents
should be in charge of denoting it by including a new link labeled
with an appropriate name such as “mayCollideWith” between
the symbol of the robot and the one of the obstacle.
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Figure 7. Simple rules that could be used for modelling the head and nose
of a human

The result of the planning is a list of transformations that
would take the current world model to the target state (the
one that defines the mission). Each transformation is
specified with the name of the rule and a map matching the
variables on the LHS of the rule with the numeric identifiers
of the symbols involved in the current model. The follow‐
ing are two examples of possible executions of the rules
defined in Fig. 5(a) andFig. 5(c), respectively:

: 4
: 4, 8

findObject t
modelMug t o

®
® ®

(1)

Execution is achieved by forwarding the computed plan to
the agents in each execution cycle. The robot’s behaviour is
the result of the coordinated actions of all the agents given
the current plan.

5.2 Context-aware perception

Although suggesting that robot perception should be
adapted to the context is a rather evident thought, the path
to achieve context-aware perception appropriately remains
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an open question. In AGGL, rules describe the context in
which a transformation can be applied (on their LHS), and
it can be used to define several context-specific rules. For
example, if we want robots to behave differently when they
are looking for new objects, depending on the location the
robot is inspecting (the floor and a table for this example),
the grammar would have two different rules differing
according to what the robot looks at: one in which the robot
appears looking at the floor, and one in which the robot
appears looking at a table. Therefore, the first rule could
only be applied when inspecting the floor, and the second
one could only be applied when inspecting a table. Since
the agents are provided with the plan of the robot (the
sequence of rules to be triggered), their behaviour can be
adapted depending on the name of the first rule to trigger
(e.g., findObjectInFloor or findObjectInTable).

5.3 Context-aware perception restrictions and model verification

The limitations imposed by the grammar on the context can
help detecting (and therefore reducing) perceptual errors
because some of them will probably not comply with the
rules of the grammar and this situation can be detected. To
illustrate this, consider the rules in Figure 7:

These rules would avoid, for example, attaching a nose to
a torso. Since there is no rule (or rule sequence) that would
do such thing, the planner used by the executive to verify
changes would report that there is no plan that would
directly link a nose to a torso. Using this grammar, the only
way to perceive a nose would be to detect first the head of
the human and only then detect its nose. By making these
checks for every possible model-change we can guarantee
that the generated models comply with the grammar.

5.4 Covert perception

Covert perception is another interesting application of
AGM. In poor conditions, such as when parts of the objects
to be detected are occluded or where there is too much
noise, bottom-up object detectors tend to decrease their
effectiveness dramatically. Grammars can also be used to
diminish this issue by enforcing the detection of specific
parts of the model (also referred to as covert perception
[33]). This means that AGM can not only be used to reduce
false positives in object detection but also to reduce false
negatives. Consider the rules shown in Figure 8 as an
extension of those in Figure 7.

(a) Touch a ball.

(b) Touch the ball with identifier 3.

Figure 6. Target patterns that could be used to make a robot
touch a ball.

relationship with the human, only in touching the ball; symbols
not appearing in the target pattern are not taken into account.
Making a symbol constant in the target pattern forces the planner
to search for a world model in which such symbol corresponds
to the one with the same identifier in the current model. Goal
patterns can be static or set by additional modules.

The result of the planning is a list of transformations that would
take the current world model to the target state (the one that
defines the mission). Each transformation is specified with
the name of the rule and a map matching the variables in the
left-hand side of the rule with the numeric identifiers of the
symbols involved in the current model. The following are two
examples of possible executions of the rules defined in Fig. 5(a)
and Fig. 5(c), respectively:

f indOb ject : t → 4

modelMug : t → 4, o → 8
(1)

Execution is achieved by forwarding the computed plan to the
agents in each execution cycle. The robot’s behavior is the result
of the coordinated actions of all the agents given the current plan.

5.2. Context-aware perception

Despite suggesting that robot perception should be adapted to
the context is a rather evident thought, the path to achieve
context-aware perception appropriately is still an open question.
In AGGL, rules describe the context in which a transformation
can be applied (in their left-hand side) and it can be used to define
several context-specific rules. For example, if we want robots
to behave differently when they are looking for new objects
depending on the location the robot is inspecting, the floor and
a table for this example, the grammar would have two different
rules differing in what the robot looks at: one in which the robot
appears looking the floor and one in which the robot appears
looking a table. Therefore, the first rule could only be applied
when inspecting the floor, and the second one could only be
applied when inspecting a table. Since the agents are provided
with the plan of the robot (the sequence of rules to be triggered)
their behavior can be adapted depending on the name of the first
rule to trigger (e.g., findObjectInFloor or findObjectInTable).

5.3. Context-aware perception restrictions and model
verification

The limitations imposed by the grammar on the context can
help detecting (and therefore reducing) perceptual errors because
some of them will probably not comply with the rules of the
grammar and this situation can be detected. To illustrate this,
consider the rules in Figure 7:

These rules would avoid, for example, attaching a nose to a torso.
Since there is no rule (or rule sequence) that would do such thing,

(a) Rule name: modelHead

(b) Rule name: modelNose

Figure 7. Simple rules that could be used for modeling the head
and nose of a human.

the planner used by the executive to verify changes would report
that there is no plan that would directly link a nose to a torso.
Using this grammar, the only way to perceive a nose would be to
detect first the head of the human and only then detect its nose.
By making these checks for every possible model change we can
guarantee that the generated models comply with the grammar.

5.4. Covert perception

Covert perception is another interesting application of AGM. In
poor conditions, such as when parts of the objects to detect are
occluded or there is too much noise, bottom-up object detectors
tend to decrease their effectiveness dramatically. Grammars can
also be used to diminish this issue by enforcing the detection
of specific parts of the model (also referred to as covert
perception [33]). This means that AGM can not only be used to
reduce false positives in object detection but also to reduce false
negatives. Consider the rules shown in Figure 8 as an extension
of those in Figure 7. Introducing these rules we actually enable

(a) Additional rule allowing to imagine a head without actually seeing it (pHead is
a short name for proto-head).

(b) Additional rule allowing to transforming pHead symbols to head symbols

Figure 8. Simple extension of the rules shown in Figure 7.

the robot to model the head using two different strategies: a) by
regular detection using an ad-hoc detector/modeler (see rule in
Figure 7(a)) and; b) by detecting a nose, which makes evident
there is a head supporting it that should be modeled (rules in
Figures 8(a) and 8(b)). It must be noted that, in the second case,
the information provided by the modeled nose can be used by a
“head detector” to improve its effectiveness by providing a good
a priori based on the information provided by the nose symbol.

5.5. Dealing with qualitative metric information

As introduced in Sect. 3, in AGM, metric-only changes are
automatically broadcasted to all the agents in the system because
pure-metric information does not have grammatical meaning
and, therefore, does not to affect plans nor can be grammatically
checked. If pure-metric information is desired to affect the
plans of the robot, one of the agents should introduce structural
changes in the model when required. For example, in the case
that a robot may collide with another object, one of the agents
should be in charge of denoting it by including a new link labeled
with an appropriate name such as “mayCollideWith” between
the symbol of the robot and the one of the obstacle.
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Figure 8. Simple extension of the rules shown in Figure 7

Introducing these rules, we actually enable the robot to
model the head using two different strategies: a) by regular
detection using an ad hoc detector/modeller (see rule in
Figure 7(a) and b) by detecting a nose, which makes it
evident that there is a head supporting it that should be
modelled (rules in Figures 8(a) and 8(b)). It should be noted
that, in the second case, the information provided by the
modelled nose can be used by a “head detector” to improve
its effectiveness by providing a good a priori based on the
information provided by the nose symbol.

5.5 Dealing with qualitative metric information

As introduced in Sect. 3, in AGM, metric-only changes are
automatically broadcast to all the agents in the system
because pure-metric information does not have grammat‐
ical meaning and, therefore, does not affect the plans (and
it cannot be grammatically checked). If pure-metric
information is desired to affect the plans of the robot, one
of the agents should introduce structural changes in the
model when required. For example, in the case where a
robot may collide with another object, one of the agents
should be in charge of denoting it by including a new link
labeled with an appropriate name, such as “mayCollide‐
With”, between the symbol of the robot and that of the
obstacle.

6. Software-related issues

In the absence of proper tools, robots tend to be program‐
med using hard-coded if-then-else constructs (which are
considerably error-prone when the complexity increases)
or, at most, fixed plans embedded in state machines (see
[34, 35]). Using state machines to embed plans makes the
code more structured, easier to understand and less-likely
to contain programming errors in comparison with hard-
coded logic. However, to use them it is necessary for
roboticists to know and include in the state machines all the
necessary states and transitions that the robots may need.
This is practical for moderately simple robots but, as they
perform a few different tasks and their world representa‐
tions become richer, developing and understanding these
state machines becomes difficult. AGM makes use of AI
planning to provide a principled, structured and distribut‐
ed way to enable robots to generate complex representa‐
tions of the environment and act according to them and the
robots’ goals.

AGM may be of greater interest if the distributed nature of
the concept behind AGM is taken to an implementation
level using Component-Oriented Programming (COP) [36,
37]. Implementing each of the active elements of AGM
depicted in Figure 2 as actual independent software
components provides several desirable features:

• Computation distribution: COP is a simple way to distrib‐
ute computational tasks in different cores and computers.

• Decoupling: Undesirable side-effects of hard dependen‐
cies between the subsystems of monolithic software are
also reduced (e.g., blocked waits).
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• Robustness: In a distributed system, the failure of a
module does not imply the failure of the whole system;
any remaining modules can re-initiate faulty ones.

• Flexibility: COP makes it easier to prototype, substitute
or include new modules (the executive, planner and
agents in AGM) and enables roboticists to implement
them in different programming languages.

Even using an advanced robotics framework, the develop‐
ment of the rules of grammar-based systems can be error-
prone and time consuming if they have to be manually
written or specified in textual languages. To make it user-
friendly, a graphical editor named AGGLEditor was
developed (see Fig. 4). The following software is also
provided: a) a library providing the functionality of the
AGM executive (libAGM), b) a planner based on AGGL
rules3 (AGGLPlanner), and c) an AGGL-to-PDDL compiler
that enables the use of AGGL grammars with the most
common PDDL planners (aggl2pddl). The library imple‐
menting the AGM executive is distributed as a framework-
agnostic C++ shared library with Python bindings and an
open license (GPLv3).

7. Indoor modelling experiment

This section describes an experiment in which a robot
equipped with a differential drive system and an orientable
RGBD sensor is requested to model the room in which it is
located and find a coffee mug. The goal is complex enough
to bring up several challenging issues that force the robot
to demonstrate sophisticated perceptual skills. Since the
robot is enclosed by a room, it cannot be modelled from a
fixed point of view; therefore, the robot must direct its gaze
towards different points of interest to be able to provide
valid room models. Even when perceiving elements lying
in the field of view of the robot’s sensors, it can be too close
or too far, or else there might be an obstacle between the
sensor and what is to be perceived. The robot must actively
ensure that the elements will be properly perceived.
Additionally, to find objects lying outside the field of view,
the robot will frequently need to move not only its head but
also its whole body, and these actions are sometimes
necessarily planned.

For this experiment, we propose a grammar that makes the
robot act in a two-staged fashion. First, the robot must
model the room, enabling it to classify input 3D points as
belonging to the room or the objects inside it. Afterwards,
the robot will enter a loop in which it looks for unknown
obstacles, approaches them for inspection and, when a
table is found, looks for mugs in the table. In the first stage,
the robot has to model its angular orientation (relative to
an arbitrary wall) and direct its gaze to different walls to
model them. In the second stage, the robot detects un‐
known obstacles, differentiating them from the walls of the
room, and approaches them for a better point of view

according to their position. Those obstacles that turn out to
be tables are represented using a high-order model for
tables, while the rest are modelled as generic obstacles
using a bounding cylinder model. Once the robot finds and
models a table, depending on its goal, it can try to find and
model the objects in the table: mugs are modelled as mug
symbols using a cylinder model and the rest are modelled
as generic objects using bounding sphere models. Al‐
though the robot automatically calibrates its camera’s
height and its joints’ offsets using AGM, we assume that
the robot is provided with this information to shorten the
experiment to an adequate length. The robot is initialized
looking forwards with the model described in Figure 9.

6. Software-related issues

In the absence of the proper tools, robots tend to be programmed

using hard-coded if-then-else constructs (which are considerably

error-prone when the complexity increases) or, at most, fixed

plans embedded in state machines (see [34, 35]). Using state

machines to embed plans makes code more structured, easier

to understand and less-likely to contain programming errors in

comparison with hard-coded logic. However, to use them it

is necessary for roboticists to know and include in the state

machines all the necessary states and transitions that the robots

may need. This is affordable for moderately simple robots but,

as they are able to do a few different tasks and their world

representations become richer, developing and understanding

these state machines becomes difficult. AGM makes use of

AI planning to provide a principled, structured and distributed

way to enable robots to generate complex representations of the

environment and act according to them and the robots’ goals.

AGM may be of greater interest if the distributed nature

of the concept behind AGM is taken to an implementation

level using Component-Oriented Programming (COP) [36, 37].

Implementing each of the active elements of AGM depicted in

Figure 2 as actual independent software components provides

several desirable features:

• Computation distribution: COP is a simple way to distribute

computational tasks in different cores and computers.

• Decoupling: Undesirable side-effects of hard dependencies

between the subsystems of monolithic software are also

reduced (e.g., blocked waits).

• Robustness: In a distributed system, the failure of a module

does not imply the failure of the whole system; remaining

modules can reinitiate faulty ones.

• Flexibility: COP makes easier to prototype, substitute or

include new modules (the executive, planner and agents in

AGM) and enables roboticists to implement them in different

programming languages.

Even using an advanced robotics framework, developing the

rules of grammar-based systems would be error-prone and time

consuming if they had to be manually written or specified

in textual languages. To make it user-friendly, a graphical

editor named AGGLEditor was developed (see Fig. 4). The

following software is also provided: a) a library providing the

functionality of the AGM executive (libAGM); b) a planner

based on AGGL rules3 (AGGLPlanner); and c) an AGGL

to PDDL compiler that enables the use of AGGL grammars

with the most common PDDL planners (aggl2pddl). The

library implementing the AGM executive is distributed as a

framework-agnostic C++ shared library with Python bindings

and an open license (GPLv3).

7. Indoor modeling experiment

This section describes an experiment in which a robot equipped

with a differential drive system and an orientable RGBD sensor

is requested to model the room in which it is located and

find a coffee mug. The goal is complex enough to bring up

several challenging issues that force the robot to demonstrate

sophisticated perceptual skills. Since robots are enclosed by

3 The implementation details of the planner are out of the scope of the paper but

it is already available in http://grammarsandrobots.org.

Figure 9. Initial model for the experiment.

rooms they cannot be modeled with a fixed point of view,

therefore robots must direct their gaze toward different points of

interest to be able to provide valid room models. Even when

perceiving elements lying in the field of view of the robots’

sensors, they can be too close or far, or there might be an

obstacle between the sensor and what is to be perceived. Robots

must actively ensure that the elements are going to be properly

perceived. Additionally, to find objects lying outside the field of

view, robots will frequently need to move not only their heads

but also their whole bodies, and these actions are sometimes

necessarily planned.

For this experiment, we propose a grammar that makes the robot

perform in a two-staged fashion. First, the robot must model

the room, enabling it to classify input 3D points as belonging to

the room or the objects inside it. Afterwards, the robot enters a

loop in which it looks for unknown obstacles, approaches them

for inspection and, when a table is found, looks for mugs in

the table. In the first stage the robot has to model its angular

orientation (relative to an arbitrary wall) and direct the gaze to

the different walls to model them. In the second stage the robot

detects unknown obstacles differentiating them from the walls

of the room and approaches them for a better point of view

according to their position. Those obstacles that turn out to be

tables are represented using a high-order model for tables, the

rest are modeled as generic obstacles using a bounding cylinder

model. Once the robot finds and models a table, depending on

its goal, it can try to find and model the objects in the table:

mugs are modeled as mug symbols using a cylinder model and

the rest are modeled as generic objects using bounding sphere

models. Despite the robot automatically calibrates its camera’s

height and its joint’s offsets using AGM, we assume that the

robot is provided with this information to shorten the experiment

to an adequate length. The robot is initialized looking at its

front with the model described in Figure 9. The remaining of

the section describes the symbol types, rules and agents used in

the experiment.

7.1. Symbols

The following list describes the symbol types that are used in the

world model of the robot. Despite the attributes of the symbols

are ignored at grammar (reasoning) level, they are also specified

in order to make the text easier to understand (note that the

symbols with no attributes still have syntactic meaning):

robot Represents the robot itself. It has no attributes.

plane Symbol temporarily used for the ground plane.

Attributes: pitch angle, roll angle, d (distance).

floor Symbol temporarily used for the ground plane and the

angle to an arbitrarily chosen zero wall used as north while

modeling the room. Attributes: yaw angle, pitch angle, roll

angle and distance d.

notWall Temporary symbol used to denote walls that are known

to exist but have not been modeled yet. No attributes.

wall Symbol used for walls that have been modeled.

Attributes: d (distance).
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Figure 9. Initial model for the experiment

The remainder of the section describes the symbol-types,
rules and agents used in the experiment.

7.1 Symbols

The following list describes the symbol-types that are used
in the world model of the robot. Although the attributes of
the symbols are ignored at the grammar (reasoning) level,
they are also specified in order to make the text easier to
understand (note that the symbols with no attributes still
have syntactic meaning):

• robot Represents the robot itself. It has no attributes.

• plane Symbol temporarily used for the ground plane.
Attributes: pitch angle, roll angle, d (distance).

• floor Symbol temporarily used for the ground plane and
the angle to an arbitrarily chosen zero wall used as north
while modelling the room. Attributes: yaw angle, pitch
angle, roll angle and distance d.

• notWall Temporary symbol used to denote walls that are
known to exist but have not been modelled yet. No
attributes.

• wall Symbol used for walls that have been modelled.
Attributes: d (distance).

• room The final symbol for the room. It has the same
attributes as the floor symbol (pitch, roll, yaw, and
distance), but room symbols can only exist once the four
walls have been modelled. The size of the room can be
computed using the distance of the robot to each of the
walls.

• obstacle Used for models of unknown obstacles.
Attributes: bounding cylinder (geometric center, radius
and height).

3 The implementation details of the planner are beyond the scope of this paper but they are already available in http://grammarsandrobots.org.
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• table Used for models of modelled tables (which, for this
experiment, are assumed to be circular). Attributes:
geometric center, radius and height.

• object Used for models of unknown objects on tables.
Attributes: bounding sphere (geometric center, radius).

• mug Used to represent mugs. Attributes: extremes of the
cylinder associated to the mug (a and b) and radius.

7.2 Grammar rules

Designing the rules of the grammar is a central task in the
development of an AGM -based system. They define what
the robot will be able to perceive and do. This section
describes the rules defined for the experiment (shown in
Tables 1–10).

Rule 1, named modelYaw (see table 1), modifies the type of
the node f, from “plane” to “floor”. Planes represent regular
planes, while floors represent “oriented planes” (i.e., a plane
with a north). Thus, it is used to denote that the bearing
angle of the robot has been modelled.

Rule 2, named lookFirstWall (see table 2), performs two
interesting modifications in the model: first, it creates a
sequence of four “notWall” symbols —not-modelled walls
— and links the sequence to the existing floor symbol, and
second, it removes the link connecting the robot and the

floor labeled “lookPerpendicular” and includes a new one
from the robot to the first of the not-modelled walls, labeled
as “looks”. It is used to represent that the robot looks
towards the wall at zero angle and that there are four walls
yet to model.

Rule 3, named lookNextWall (see table 3), moves the head of
the arrow from a modelled wall to the next not-modelled
wall. It is used to denote that the robot does not look
towards the last modelled wall any more but to the next
not-modelled wall (i.e., the robot moved its gaze towards
the next wall to model).

Rules 4 and 5, respectively named modelWall and model‐
LastWall (see tables 4 and 5), modify the type of walls from
“notWall” to “wall”. They are used to indicate that a wall
has been modelled. Additionally, rule 5 also changes the
type of the floor from “floor” to “room”, denoting that the
room has been completely modelled. The difference is that
rule 4 is used to model all the walls but the last one, which
is modelled using rule 5.

Rule 6, named detectObstacle (shown in table 6), creates and
links new obstacle symbols to the room symbol associated
with the robot. It is used to include obstacles (unknown
objects located in the floor) in the representation.

Rule 7 is named approachObstacle (shown in table 7). It
creates a new link labeled “closeLook” from the robot to

Table 1. Rule 1 is used to denote that the bearing angle of the robot has been modeled. Rule name:“modelYaw”.

Table 2. Rule 2 is used to look to the first wall. Rule name: “lookFirstWall”.

Table 3. Rule 3 is used to denote that the robot has switched its gaze to the next not modeled wall. Rule name: “lookNextWall”.

Table 4. Rule 4 is used to denote that the robot has modeled a wall. Rule name: “modelWall”.

Table 5. Rule 5 is used to denote that the robot has modeled the last wall. Rule name: “modelLastWall”.

Table 6. Rule 6 is used to include obstacles in the representation. Rule name: “detectObstacle”.

Figure 11. Picture of the environment in which the system was

tested.

and 14) modelMugInTable. The plans in AGM are monitored

and updated with every model-change event, in case something

does not go as expected. However, to avoid using unnecessary

space and to improve readability, we describe the execution of

an experiment in which everything goes as planned. Table 11

shows the events that occur in an execution of the experiment

according to the plan.

The software developed for the experiment benefited from using

the architecture because AGM enforces implementing modules

as loosely coupled components: the executive, the planner, and

more importantly, the agents. This made easier to include new

agents and grammar rules, and reduced undesirable inter-module

interactions (e.g., deadlocks, shared-memory side-effects). The

fact that the executive works with high-level descriptions helps

detecting and reducing errors and diminishes the time spent

designing and integrating the grammar.

The mean execution time was of 94.4 seconds with a standard

deviation of 4.3. The memory overhead derived from the

use of component-oriented framework is less than 10Mb per

component. Given that we used a total of eight components,

the overall memory overhead was of a total of 80Mb, which is

negligible for any modern computer. Additionally, we benefit

from the advantages derived from COP (see section 6). The

maximum planning time measured was of 1.45s, using the

FastDownward planner in an i5 laptop [38].

8. Conclusions

Perception is still the main limitation of domestic robots [1].

The paper presented the AGM architecture and the features it

provides to improve robot perception. It makes use of AGGL, a
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Table 1. Rule 1 is used to denote that the bearing angle of the robot has been modelled. Rule name:“modelYaw”.

Table 1. Rule 1 is used to denote that the bearing angle of the robot has been modeled. Rule name:“modelYaw”.

Table 2. Rule 2 is used to look to the first wall. Rule name: “lookFirstWall”.

Table 3. Rule 3 is used to denote that the robot has switched its gaze to the next not modeled wall. Rule name: “lookNextWall”.

Table 4. Rule 4 is used to denote that the robot has modeled a wall. Rule name: “modelWall”.

Table 5. Rule 5 is used to denote that the robot has modeled the last wall. Rule name: “modelLastWall”.

Table 6. Rule 6 is used to include obstacles in the representation. Rule name: “detectObstacle”.

Figure 11. Picture of the environment in which the system was

tested.

and 14) modelMugInTable. The plans in AGM are monitored

and updated with every model-change event, in case something

does not go as expected. However, to avoid using unnecessary

space and to improve readability, we describe the execution of

an experiment in which everything goes as planned. Table 11

shows the events that occur in an execution of the experiment

according to the plan.

The software developed for the experiment benefited from using

the architecture because AGM enforces implementing modules

as loosely coupled components: the executive, the planner, and

more importantly, the agents. This made easier to include new

agents and grammar rules, and reduced undesirable inter-module

interactions (e.g., deadlocks, shared-memory side-effects). The

fact that the executive works with high-level descriptions helps

detecting and reducing errors and diminishes the time spent

designing and integrating the grammar.

The mean execution time was of 94.4 seconds with a standard

deviation of 4.3. The memory overhead derived from the

use of component-oriented framework is less than 10Mb per

component. Given that we used a total of eight components,

the overall memory overhead was of a total of 80Mb, which is

negligible for any modern computer. Additionally, we benefit

from the advantages derived from COP (see section 6). The

maximum planning time measured was of 1.45s, using the

FastDownward planner in an i5 laptop [38].

8. Conclusions

Perception is still the main limitation of domestic robots [1].

The paper presented the AGM architecture and the features it

provides to improve robot perception. It makes use of AGGL, a
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Table 2. Rule 2 is used to look to the first wall. Rule name: “lookFirstWall”.

Table 1. Rule 1 is used to denote that the bearing angle of the robot has been modeled. Rule name:“modelYaw”.

Table 2. Rule 2 is used to look to the first wall. Rule name: “lookFirstWall”.

Table 3. Rule 3 is used to denote that the robot has switched its gaze to the next not modeled wall. Rule name: “lookNextWall”.

Table 4. Rule 4 is used to denote that the robot has modeled a wall. Rule name: “modelWall”.

Table 5. Rule 5 is used to denote that the robot has modeled the last wall. Rule name: “modelLastWall”.

Table 6. Rule 6 is used to include obstacles in the representation. Rule name: “detectObstacle”.

Figure 11. Picture of the environment in which the system was

tested.

and 14) modelMugInTable. The plans in AGM are monitored

and updated with every model-change event, in case something

does not go as expected. However, to avoid using unnecessary

space and to improve readability, we describe the execution of

an experiment in which everything goes as planned. Table 11

shows the events that occur in an execution of the experiment

according to the plan.

The software developed for the experiment benefited from using

the architecture because AGM enforces implementing modules

as loosely coupled components: the executive, the planner, and

more importantly, the agents. This made easier to include new

agents and grammar rules, and reduced undesirable inter-module

interactions (e.g., deadlocks, shared-memory side-effects). The

fact that the executive works with high-level descriptions helps

detecting and reducing errors and diminishes the time spent

designing and integrating the grammar.

The mean execution time was of 94.4 seconds with a standard

deviation of 4.3. The memory overhead derived from the

use of component-oriented framework is less than 10Mb per

component. Given that we used a total of eight components,

the overall memory overhead was of a total of 80Mb, which is

negligible for any modern computer. Additionally, we benefit

from the advantages derived from COP (see section 6). The

maximum planning time measured was of 1.45s, using the

FastDownward planner in an i5 laptop [38].

8. Conclusions

Perception is still the main limitation of domestic robots [1].
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Table 6. Rule 6 is used to include obstacles in the representation. Rule name: “detectObstacle”.
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shows the events that occur in an execution of the experiment
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the architecture because AGM enforces implementing modules
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more importantly, the agents. This made easier to include new

agents and grammar rules, and reduced undesirable inter-module

interactions (e.g., deadlocks, shared-memory side-effects). The

fact that the executive works with high-level descriptions helps

detecting and reducing errors and diminishes the time spent

designing and integrating the grammar.

The mean execution time was of 94.4 seconds with a standard

deviation of 4.3. The memory overhead derived from the

use of component-oriented framework is less than 10Mb per

component. Given that we used a total of eight components,

the overall memory overhead was of a total of 80Mb, which is

negligible for any modern computer. Additionally, we benefit

from the advantages derived from COP (see section 6). The

maximum planning time measured was of 1.45s, using the
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Table 4. Rule 4 is used to denote that the robot has modelled a wall. Rule name: “modelWall”.
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obstacle symbols. It is used to denote that the robot is
looking towards a specific obstacle from a close position.

Rule 8, named modelTable (shown in table 8), modifies the
type of obstacle symbols to table symbols. It is used to denote
that an obstacle has been successfully modelled as a table.

Rule 9, named findObjectsInTables (shown in table 9), creates
and links new object symbols to tables that are being looked
at. It is used to denote that an obstacle has been successfully
modelled as a table.

Rule 10 is named modelMugInTable (shown in table 10). It
modifies the type of object symbols to mug symbols. It is
used to denote that an object has been successfully model‐
led as a mug.

7.3 Agents and behaviours

AGM rules do not model or interact with the environment
by themselves –they are only used to plan actions and
verify model modifications. Such actions are implemented
in agents, as described in section 3, which are also in charge
of updating the model correspondingly. For this experi‐
ment, we developed the following agents:

• yaw: In charge of modelling and tracking the yaw angle
of the camera of the robot. Implements rule 1.

• saccade: In charge of performing camera saccades and
platform movements. Implements rules 2, 3 and 7.

Table 1. Rule 1 is used to denote that the bearing angle of the robot has been modeled. Rule name:“modelYaw”.

Table 2. Rule 2 is used to look to the first wall. Rule name: “lookFirstWall”.

Table 3. Rule 3 is used to denote that the robot has switched its gaze to the next not modeled wall. Rule name: “lookNextWall”.

Table 4. Rule 4 is used to denote that the robot has modeled a wall. Rule name: “modelWall”.

Table 5. Rule 5 is used to denote that the robot has modeled the last wall. Rule name: “modelLastWall”.

Table 6. Rule 6 is used to include obstacles in the representation. Rule name: “detectObstacle”.

Figure 11. Picture of the environment in which the system was

tested.
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an experiment in which everything goes as planned. Table 11
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as loosely coupled components: the executive, the planner, and

more importantly, the agents. This made easier to include new

agents and grammar rules, and reduced undesirable inter-module

interactions (e.g., deadlocks, shared-memory side-effects). The

fact that the executive works with high-level descriptions helps

detecting and reducing errors and diminishes the time spent

designing and integrating the grammar.

The mean execution time was of 94.4 seconds with a standard

deviation of 4.3. The memory overhead derived from the

use of component-oriented framework is less than 10Mb per

component. Given that we used a total of eight components,

the overall memory overhead was of a total of 80Mb, which is

negligible for any modern computer. Additionally, we benefit

from the advantages derived from COP (see section 6). The

maximum planning time measured was of 1.45s, using the

FastDownward planner in an i5 laptop [38].
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Perception is still the main limitation of domestic robots [1].

The paper presented the AGM architecture and the features it

provides to improve robot perception. It makes use of AGGL, a
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Table 5. Rule 5 is used to denote that the robot has modelled the last wall. Rule name: “modelLastWall”.

Table 1. Rule 1 is used to denote that the bearing angle of the robot has been modeled. Rule name:“modelYaw”.

Table 2. Rule 2 is used to look to the first wall. Rule name: “lookFirstWall”.

Table 3. Rule 3 is used to denote that the robot has switched its gaze to the next not modeled wall. Rule name: “lookNextWall”.

Table 4. Rule 4 is used to denote that the robot has modeled a wall. Rule name: “modelWall”.

Table 5. Rule 5 is used to denote that the robot has modeled the last wall. Rule name: “modelLastWall”.

Table 6. Rule 6 is used to include obstacles in the representation. Rule name: “detectObstacle”.

Figure 11. Picture of the environment in which the system was
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interactions (e.g., deadlocks, shared-memory side-effects). The

fact that the executive works with high-level descriptions helps

detecting and reducing errors and diminishes the time spent

designing and integrating the grammar.

The mean execution time was of 94.4 seconds with a standard

deviation of 4.3. The memory overhead derived from the

use of component-oriented framework is less than 10Mb per

component. Given that we used a total of eight components,

the overall memory overhead was of a total of 80Mb, which is

negligible for any modern computer. Additionally, we benefit

from the advantages derived from COP (see section 6). The

maximum planning time measured was of 1.45s, using the

FastDownward planner in an i5 laptop [38].
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www.intechopen.com :

A perception-aware architecture for autonomous robots

9

Table 6. Rule 6 is used to include obstacles in the representation. Rule name: “detectObstacle”.

Table 7. Rule 7: is used to denote that an obstacle is being seen by the robot. Rule name: “approachObstacle”.

Table 8. Rule 8, used to denote that an obstacle has been successfully modeled as a table. Rule name: “modelTable”.

Table 9. Rule 9, used to include new objects in tables. Rule name: “findObjectsInTables”.

Table 10. Rule 10, used to classify objects in tables as mugs. Rule name: “modelMugInTable”.

source of event

the event description

executive The experiment begins. The executive analyzes the mission and uses the planner to get the first action of the plan with the

lowest cost that would get the robot to the target state. As a result, the yaw agent is activated.

yaw Agent yaw models the yaw of the robot with respect an arbitrary wall of the room and proposes to update the current model.

After the modification is verified the executive broadcasts the new model and removes the first action of the plan (rule 1).

saccade Agent saccade makes the robot look toward the closest wall (rule 2). Again, as in the following events, the agent proposes

a modification and, after the model is verified and broadcasted, the executive updates the plan, removing the first action.

distance Agent distance models the distance to the wall (rule 4).

saccade The agent saccade makes the robot look toward the next wall (rule 3). These two last events are repeated three times.

distance The agent distance models the last wall (rule 5).

unknown The agent unknown detects an obstacle (rule 6).

saccade Agent saccade makes the robot closer to the obstacle (which is actually a table) and triggers rule 7.

table Agent table models the obstacle as a table (rule 8).

unknown Agent unknown detects an object in the table (rule 9).

mug Agent mug models the object as a mug (rule 10). The robot accomplishes the mission.

Table 11. Events and actions during the experiment.

high-level visual language which allows to easily create domain

definitions and obtain plans that explicitly express how can

robots actively find and classify objects. Instead of an active

process which is automatically planned, to the knowledge of the

authors, all previous architectures approach perception whether

as a passive process or as part of an already given task plan.

Moreover, AGM verifies that the model held by the robot is

grammatically sound by accepting only those modifications that

are valid according the grammar of the world, a feature which

any other known architecture lack.

The AGM architecture has a distributed nature and was designed

with reusability and scalability in mind: the executive is

domain-independent, and the same agents can be reused for

different applications with little or no modification.

To demonstrate how the architecture and the AGGL language can

be used, the paper presented a moderately complex experiment

in which a robot uses these technologies to autonomously model

the room in which it is located and find and model a mug in

a table. Robots using AGM can be assigned more complex

goals dealing with additional types of objects and additional

rules dealing with them, see http://grammarsandrobots.org for

additional examples.
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• distance: In charge of modelling and maintaining floor
and wall distances. Implements rules 4 and 5.

• unknown: Detects and introduces in the world repre‐
sentation obstacles (surfaces that were not expected
according to the previous world model). It can also
provide models for obstacles and objects (tables and
mugs). It implements rules 6, 8, 9 and 10 and updates the
attributes of the obstacle, table, object and mug symbols.

7.4 Implementation and software components

The whole system was implemented using COP (see
section 6) and the RoboComp framework [37]. The execu‐
tive –which is domain-independent– and each of the agents
were implemented as separate components. Additional
components for hardware access, the processing of the
acquired point cloud, and the execution of the platform and
camera-coordinated saccades, were also used.

7.5 Experiment execution

The experiment described in the previous section was
tested in a real robot in the environment shown in figure
11. It is a room with two tables and several obstacles: three
chairs, a coat stand, a radiator and a litter bin. The goal
provided to the executive is shown in figure 10. As with
any other goal pattern, it only contains the symbols
required to specify the goal: "the robot must model the
room in which it is located and find an obstacle".

room The final symbol for the room. It has the same attributes

than the floor symbol (pitch, roll, yaw, and distance), but

room symbols can only exist once the four walls have been

modeled. The size of the room can be computed using the

distance of the robot to each of the walls.

obstacle Used for models of unknown obstacles. Attributes:

bounding cylinder (geometric center, radius and height).

table Used for models of modeled tables (which for this

experiment are assumed to be circular). Attributes:

geometric center, radius and height.

object Used for models of unknown objects in tables.

Attributes: bounding sphere (geometric center, radius).

mug Used to represent mugs. Attributes: extremes of the

cylinder associated to the mug (a and b) and radius.

7.2. Grammar rules

Designing the rules of the grammar is a central task in the

development of an AGM-based system. They define what robots

will be able to perceive and do. This section describes the rules

defined for the experiment (shown in Tables 1–10).

Rule 1, named modelYaw (see table 1), modifies the type of the

node f, from “plane” to “floor”. Planes represent regular planes,

whilst floors represent “oriented planes” (i.e., a plane with a

north). Thus, it is used to denote that the bearing angle of the

robot has been modeled.

Rule 2, named lookFirstWall (see table 2), performs two

interesting modifications in the model: first, it creates a

sequence of four “notWall” symbols —not modeled walls—

and links the sequence to the existing floor symbol; second, it

removes the link connecting the robot and the floor labeled as

“lookPerpendicular” and includes a new one from the robot to

the first of the not modeled walls labeled as “looks”. It is used to

represent that the robot looks toward the wall at zero angle and

that there are four walls yet to model.

Rule 3, named lookNextWall (see table 3), moves the head of

the arrow from a modeled wall to the next not-modeled wall. It

is used to denote that the robot does not look toward the last

modeled wall anymore but to the next not-modeled wall (i.e., the

robot moved its gaze toward the next wall to model).

Rules 4 and 5, respectively named modelWall and modelLastWall

(see tables 4 and 5), modify the type of walls from “notWall” to

“wall”. They are used to indicate that a wall has been modeled.

Additionally, rule 5 also changes the type of the floor from

“floor” to “room”, denoting that the room has been completely

modeled. The difference is that rule 4 is used to model all the

walls but the last one, which is modeled using rule 5.

Rule 6, named detectObstacle (shown in table 6), creates and

links new obstacle symbols to the room symbol associated to the

robot. It is used to include obstacles (unknown objects located in

the floor) in the representation.

Rule 7 is named approachObstacle (shown in table 7). It creates

a new link labeled as “closeLook” from the robot to obstacle

symbols. It is used to denote that the robot is looking toward a

specific obstacle from a close position.

Rule 8, named modelTable (shown in table 8), modifies the type

of obstacle symbols to table symbols. It is used to denote that an

obstacle has been successfully modeled as a table.

Rule 9, named findObjectsInTables (shown in table 9), creates

and links new object symbols to tables that are being looked at. It

is used to denote that an obstacle has been successfully modeled

as a table.

Rule 10 is named modelMugInTable (shown in table 10). It

modifies the type of object symbols to mug symbols. It is used

to denote that an object has been successfully modeled as a mug.

7.3. Agents and behaviors

AGM rules do not model or interact with the environment

by themselves, they are just used to plan actions and verify

model modifications. Such actions are implemented in agents

as described in section 3, which are also in charge of updating

the model correspondingly. For this experiment we developed

the following agents:

yaw: In charge of modeling and tracking the yaw angle of the

camera of the robot. Implements rule 1.

saccade: In charge of performing camera saccades and platform

movements. Implements rules 2, 3 and 7.

distance: In charge of modeling and maintaining floor and wall

distances. Implements rules 4 and 5.

unknown: Detects and introduces in the world representation

obstacles (surfaces that were not expected according to the

previous world model). It can also provide models for

obstacles and objects (tables and mugs). It implements

rules 6, 8, 9 and 10 and updates the attributes of obstacle,

table, object and mug symbols.

7.4. Implementation and software components

The whole system was implemented using COP (see section 6)

and the RoboComp framework [37]. The executive –which is

domain-independent– and each of the agents were implemented

as separate components. Additional components for hardware

access, the processing of the acquired point cloud and the

execution of platform and camera coordinated saccades were

also used.

7.5. Experiment execution

The experiment described in the previous section was tested in a

real robot, in the environment shown in figure 11. It is a room

with two tables and several obstacles: three chairs, a coat stand,

a radiator and a litter bin. The goal provided to the executive is

the shown in figure 10. As any other goal pattern it only contains

the symbols required to specify the goal: “the robot must model

the room in which it is located and find an obstacle”.

Figure 10. The goal provided to the executive for the experiment.

The plan returned by the planner to achieve the robot’s

goal consists of the sequence executions of the following

rules: 1) modelYaw, 2) lookFirstWall, 3) modelWall,

4) lookNextWall, 5) modelWall, 6) lookNextWall, 7) modelWall,

8) lookNextWall, 9) modelLastWall, 10) findObstacle,

11) approachObstacle, 12) modelTable, 13) findObjectInTable
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Figure 10. The goal provided to the executive for the experiment

The plan returned by the planner to achieve the robot’s goal
consists of the sequence executions of the following rules:
1) modelYaw, 2) lookFirstWall, 3) modelWall, 4) lookNext‐
Wall, 5) modelWall, 6) lookNextWall, 7) modelWall, 8)
lookNextWall, 9) modelLastWall, 10) findObstacle, 11)
approachObstacle, 12) modelTable, 13) findObjectInTable
and 14) modelMugInTable. The plans in AGM are moni‐
tored and updated with every model-change event in case
something does not go as expected. However, to avoid
using unnecessary space and to improve readability, we
describe the execution of an experiment in which every‐
thing goes as planned. Table 11 shows the events that occur
in the execution of the experiment according to the plan.

source of the
event

event description

executive The experiment begins. The executive analyses the mission
and uses the planner to get the first action of the plan with
the lowest cost that would get the robot to the target state. As
a result, the yaw agent is activated.

yaw The agent yaw models the yaw of the robot with respect to an
arbitrary wall of the room and proposes to update the current
model. After the modification is verified, the executive
broadcasts the new model and removes the first action of the
plan (Rule 1).

saccade The agent saccade makes the robot look towards the closest
wall (Rule 2). Again, as in the following events, the agent
proposes a modification and, after the model is verified and
broadcast, the executive updates the plan, removing the first
action.

distance The agent distance models the distance to the wall (Rule 4).

saccade The agent saccade makes the robot look towards the next wall
(Rule 3). These two last events are repeated three times.

distance The agent distance models the last wall (Rule 5).

unknown The agent unknown detects an obstacle (Rule 6).

saccade The agent saccade makes the robot closer to the obstacle
(which is actually a table) and triggers Rule 7.

table The agent table models the obstacle as a table (Rule 8).

unknown The agent unknown detects an object on the table (Rule 9).

mug The agent mug models the object as a mug (Rule 10). The
robot accomplishes the mission.

Table 11. Events and actions during the experiment

Table 1. Rule 1 is used to denote that the bearing angle of the robot has been modeled. Rule name:“modelYaw”.

Table 2. Rule 2 is used to look to the first wall. Rule name: “lookFirstWall”.

Table 3. Rule 3 is used to denote that the robot has switched its gaze to the next not modeled wall. Rule name: “lookNextWall”.

Table 4. Rule 4 is used to denote that the robot has modeled a wall. Rule name: “modelWall”.

Table 5. Rule 5 is used to denote that the robot has modeled the last wall. Rule name: “modelLastWall”.

Table 6. Rule 6 is used to include obstacles in the representation. Rule name: “detectObstacle”.

Figure 11. Picture of the environment in which the system was

tested.

and 14) modelMugInTable. The plans in AGM are monitored

and updated with every model-change event, in case something

does not go as expected. However, to avoid using unnecessary

space and to improve readability, we describe the execution of

an experiment in which everything goes as planned. Table 11

shows the events that occur in an execution of the experiment

according to the plan.

The software developed for the experiment benefited from using

the architecture because AGM enforces implementing modules

as loosely coupled components: the executive, the planner, and

more importantly, the agents. This made easier to include new

agents and grammar rules, and reduced undesirable inter-module

interactions (e.g., deadlocks, shared-memory side-effects). The

fact that the executive works with high-level descriptions helps

detecting and reducing errors and diminishes the time spent

designing and integrating the grammar.

The mean execution time was of 94.4 seconds with a standard

deviation of 4.3. The memory overhead derived from the

use of component-oriented framework is less than 10Mb per

component. Given that we used a total of eight components,

the overall memory overhead was of a total of 80Mb, which is

negligible for any modern computer. Additionally, we benefit

from the advantages derived from COP (see section 6). The

maximum planning time measured was of 1.45s, using the

FastDownward planner in an i5 laptop [38].

8. Conclusions

Perception is still the main limitation of domestic robots [1].

The paper presented the AGM architecture and the features it

provides to improve robot perception. It makes use of AGGL, a
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Figure 11. Picture of the environment in which the system was tested

The software developed for the experiment benefited from
using the architecture because AGM enforces implement‐
ing modules as loosely coupled components: the executive,
the planner and, more importantly, the agents. This made

Table 7. Rule 7: is used to denote that an obstacle is being seen by the robot. Rule name: “approachObstacle”.

Table 8. Rule 8, used to denote that an obstacle has been successfully modeled as a table. Rule name: “modelTable”.

Table 9. Rule 9, used to include new objects in tables. Rule name: “findObjectsInTables”.

Table 10. Rule 10, used to classify objects in tables as mugs. Rule name: “modelMugInTable”.

source of event

the event description

executive The experiment begins. The executive analyzes the mission and uses the planner to get the first action of the plan with the

lowest cost that would get the robot to the target state. As a result, the yaw agent is activated.

yaw Agent yaw models the yaw of the robot with respect an arbitrary wall of the room and proposes to update the current model.

After the modification is verified the executive broadcasts the new model and removes the first action of the plan (rule 1).

saccade Agent saccade makes the robot look toward the closest wall (rule 2). Again, as in the following events, the agent proposes

a modification and, after the model is verified and broadcasted, the executive updates the plan, removing the first action.

distance Agent distance models the distance to the wall (rule 4).

saccade The agent saccade makes the robot look toward the next wall (rule 3). These two last events are repeated three times.

distance The agent distance models the last wall (rule 5).

unknown The agent unknown detects an obstacle (rule 6).

saccade Agent saccade makes the robot closer to the obstacle (which is actually a table) and triggers rule 7.

table Agent table models the obstacle as a table (rule 8).

unknown Agent unknown detects an object in the table (rule 9).

mug Agent mug models the object as a mug (rule 10). The robot accomplishes the mission.

Table 11. Events and actions during the experiment.

high-level visual language which allows to easily create domain

definitions and obtain plans that explicitly express how can

robots actively find and classify objects. Instead of an active

process which is automatically planned, to the knowledge of the

authors, all previous architectures approach perception whether

as a passive process or as part of an already given task plan.

Moreover, AGM verifies that the model held by the robot is

grammatically sound by accepting only those modifications that

are valid according the grammar of the world, a feature which

any other known architecture lack.

The AGM architecture has a distributed nature and was designed

with reusability and scalability in mind: the executive is

domain-independent, and the same agents can be reused for

different applications with little or no modification.

To demonstrate how the architecture and the AGGL language can

be used, the paper presented a moderately complex experiment

in which a robot uses these technologies to autonomously model

the room in which it is located and find and model a mug in

a table. Robots using AGM can be assigned more complex

goals dealing with additional types of objects and additional

rules dealing with them, see http://grammarsandrobots.org for

additional examples.
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it easier to include new agents and grammar rules, and
reduced undesirable inter-module interactions (e.g.,
deadlocks and shared-memory side-effects). The fact that
the executive works with high-level descriptions helps in
detecting and reducing errors and diminishes the time
spent designing and integrating the grammar.

The mean execution time was 94.4 seconds with a standard
deviation of 4.3. The memory overhead derived from the
use of the component-oriented framework was less than 10
Mb per component. Given that we used a total of eight
components, the overall memory overhead was a total of
80 Mb, which is negligible for any modern computer.
Additionally, we benefit from the advantages derived from
COP (see section 6). The maximum planning time meas‐
ured was 1.45 s using the FastDownward planner on an i5
laptop [38].

8. Conclusions

Perception is still the main limitation of domestic robots [1].
The paper presented the AGM architecture and the features
that it provides to improve robot perception. It makes use
of AGGL, a high-level visual language which enables the
easy creation of domain definitions and the obtaining of
plans that explicitly express how can robots actively find
and classify objects. Instead of an active process which is
automatically planned, and to the knowledge of the
authors, all previous architectures approach perception
whether as a passive process or as part of an already-given
task plan. Moreover, AGM verifies that the model held by
the robot is grammatically sound by accepting only those
modifications that are valid according the grammar of the
world, a feature which any other known architecture lacks.

The AGM architecture has a distributed nature and was
designed with reusability and scalability in mind: the
executive is domain-independent, and the same agents can
be reused for different applications with little or no
modification.

To demonstrate how the architecture and the language
AGGL can be used, the paper presented a moderately
complex experiment in which a robot uses these technolo‐
gies to autonomously model the room in which it is located
and find and model a mug on a table. Robots using AGM
can be assigned more complex goals dealing with addi‐
tional types of objects and additional rules dealing with
them, see http://grammarsandrobots.org for additional
examples.
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